Plano da disciplina da pós graduação em Biotecnologia e Biociências : **Bioprocessos**

Nº de Créditos: Quatro créditos (04)

Total Horas-Aula: Sessenta horas aula (60)

Trimestre: 2016/2

Período: 03/07/2017 a 21/07/2017

Horário: Segunda a Sexta (14:00 -15:40 16;)

Vagas: 20

Pré-requisitos: Não se aplica.

Docentes:

Prof Diogo Robl (Responsável)

Prof Boris Juan Carlos Ugarte Stambuk

Prof Oscar Bruna Romero

Prof Márcio José Rossi

Ementa:

Fundamentos gerais de bioprocessos e biotecnologia. Seleção e caracterização de microrganismos. Noções de cinética microbiana. Conceitos básicos de biorreatores, formas de cultivo,

agitação e aeração. Introdução à enzimologia. Métodos de imobilização de enzimas e células. Aplicação

industrial de enzimas. Fundamentos da purificação de bioprodutos. Produção de proteínas heterólogas e

vetores de expressão. Processos biotecnológicos aplicados a tratamento de resíduos e efluentes.

Bioprocessos na área de alimentos e bebidas. Vacinologia e produção de kits de diagnóstico.

Biocombustíveis e biorrefinaria.

Objetivos:

Ao final da disciplina os alunos serão capazes de caracterizar bioprocessos industriais do ponto

de vista tecnológico e econômico; formular meios de cultivo; selecionar microrganismos/enzimas de

importância industrial; planejar estratégias de cultivo; calcular rendimentos e parâmetros cinéticos dos

processos; descrever características gerais e específicas da purificação de bioprodutos; e propor possíveis

abordagens de purificação.

Avaliação:

Os alunos serão avaliados pelo Desempenho e Participação (DP), por uma lista de exercícios

(LE), um projeto (PB).

Para a avaliação do DP será utilizada uma ficha onde serão anotadas observações durante a

realização das atividades. Na LE o aluno resolverá com consulta exercícios sobre o conteúdo do curso. Os

temas para o desenvolvimento do projeto em bioprocessos serão distribuídos no início do curso e serão

desenvolvidos individualmente ou em grupos. Tratarão sobre assuntos relacionados com processos biotecnológicos aplicados à saúde, indústria, meio ambiente e alimentos. Na apresentação, serão considerados os seguintes critérios: conteúdo (3,5 pontos), apresentação (3,5 pontos), recursos audiovisuais (2 pontos) e duração (1 ponto) (25-30 minutos para apresentação e 15 minutos de discussão). A nota da apresentação do projeto será 10.

A nota final será o resultado das avaliações com os pesos seguintes: DP = 10 %, LE = 30 %, PB = 60 %.

Conteúdos da disciplina

- Introdução aos bioprocessos
- Prospecção de microrganismos de importância industrial
- Caracterização de microrganismos de importância industrial
- Preservação de microrganismos de importância industrial
- Melhoramento de microrganismos de importância industrial
- Desenvolvimento de inóculo e seleção de meios de cultura
- Cinética microbiana e estequiometria
- Biorreatores: conceitos básicos
- Transferência de oxigênio e respiração microbiana
- Bioprocessos em estado sólido
- Recuperação e purificação de bioprodutos
- Tecnologia enzimática
- Bioprocesssos ambientais, em alimentos e biocombustíveis
- Produção de vacinas e kits de diagnósticos
- Projetos em bioprocessos

Cronograma

Aula	Data	Assunto	Professor
1	03/07 – 14:00 as 15:40	Introdução aos bioprocessos e prospecção	Diogo
		de microrganismos de importância	
		industrial	
2	03/07 – 16: 00 as 18:00	Caracterização e preservação de	Diogo
		microrganismos de importância industrial	
3	04/07 - 14:00 as 15:40	Fermentação alcoólica: alimentos	Boris
4	04/07 - 16: 00 as 18:00	Fermentação alcoólica: alimentos II	Boris
5	05/07 - 14:00 as 15:40	Fermentação alcoólica: combustíveis	Boris
6	05/07 - 16: 00 as 18:00	Fermentação alcoólica: combustíveis II	Boris
7	06/07 -14:00 as 15:40	Melhoramento de microrganismos de	Boris
		importância industrial I	

8	06/07 - 16: 00 as 18:00	Melhoramento de microrganismos de	Boris
		importância industrial II	
9	07/07 - 14:00 as 15:40	Engenharia metabólica e biologia	Boris
		molecular em bioprocessos I	
10	07/07- 16: 00 as 18:00	Engenharia metabólica e biologia	Boris
		molecular em bioprocessos II	
11	10/07 -14:00 as 15:40	Desenvolvimento de inóculo e seleção de	Diogo
		meios de cultura microbianos para	
		aplicação industrial	
12	10/07 - 16: 00 as 18:00	Cinética microbiana	Diogo
13	11/07 -14:00 as 15:40	Estequiometria em bioprocessos	Diogo
14	11/07 - 16: 00 as 18:00	Estratégias de cultivos em biorreatores	Diogo
15	12/07 -14:00 as 15:40	Biorreatores: conceitos básicos	Marcio
16	12/07 - 16: 00 as 18:00	Prática de biorreatores	Marcio
17	13/07 -14:00 as 15:40	Transferência de oxigênio e respiração	Marcio
		microbiana	
18	13/07 - 16: 00 as 18:00	Prática de transferência de oxigênio	Marcio
19	14/07 -14:00 as 15:40	Bioprocessos em estado sólido	Diogo
20	14/07 - 16: 00 as 18:00	Recuperação e purificação de bioprodutos	Diogo
21	17/07 -14:00 as 15:40	Expressão de proteínas recombinantes:	Oscar
		Requerimentos moleculares e opções de	
		vetores de expressão (I)	
22	17/07 - 16: 00 as 18:00	Expressão de proteínas recombinantes:	Oscar
		Requerimentos moleculares e opções de	
		vetores de expressão (II)	
23	18/07 -14:00 as 15:40	Imunobiológicos sintéticos:	Oscar
		Desenvolvimento de Vacinas e Kits	
		diagnósticos (I)	
24	18/07 - 16: 00 as 18:00	Imunobiológicos sintéticos:	Oscar
		Desenvolvimento de Vacinas e Kits	
		diagnósticos (II)	
25	19/07 -14:00 as 15:40	Tecnologia enzimática	Diogo
26	19/07 - 16: 00 as 18:00	Cinética enzimática	Diogo
27	20/07 -14:00 as 15:40	Imobilização enzimática	Diogo
28	20/07 - 16: 00 as 18:00	Bioprocessos ambientais	Diogo
29	21/07 -14:00 as 15:40	Apresentação do projeto em bioprocessos	Diogo
30	21/07 - 16: 00 as 18:00	Apresentação do projeto em bioprocessos	Diogo

Bibliografia

- SHULER, M.; KARGI, F. Bioprocess Engineering: Basic Concepts, Prentice Hall, 2a edition, 2002.
- BAILEY, J.E.; OLLIS, D.F. Biochemical Engineering Fundamentals, McGraw Hill, New York, 1986.
- BORZANI, W.; SCHMIDELL, W.; LIMA, U.A.; AQUARONE, E. (Eds.). Biotecnologia Industrial, vol 1, 2, 3, 4, Edgard Blücher, 1^a edição, São Paulo, 2001.
- BON, E. P. S. Enzimas em biotecnologia: produção, aplicações e mercado. Rio de Janeiro: Interciência, 2008.
- DORAN, P. M. Bioprocess Engineering Principles. 2. ed. Waltham: Academic Press, 2012.
- HARRISON, R. G.; TODD, P., RUDGE, S. R., PETRIDES, D. P. Bioseparations science and engineering. New York: Oxford University Press, 2003.
- NELSON, D. L.; LEHNINGER, A. L.; COX, M. Princípios de bioquímica de Lehninger. 5. ed. São Paulo: Artmed, 2011.
- PESSOA JR., A.; KILIKIAN, B.V. (Eds.). Purificação de Produtos Biotecnológicos, Editora Manole, São Paulo, 2005.